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Molecules or reacting assemblies of an isomeric set of atoms become related 
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I. Introduction 

Our object is to relate different molecules to each other. We need to deduce 
directly from quantum mechanics how qualitative quantum electronic properties 
change as one or more molecules, made of the same isomeric assembly of atoms, 
change their three dimensional spatial configuration in ~3 (Euclidean 3-space), 
isomerize, react, or rearrange into other molecules. 

To this end, we introduced two notions in the previous two papers of this series: 
i) the fundamental valency dyad space field [1], and ii) a principle of linear 
covariance [2] for quantum mechanics in general and for the quantum theory of 
molecules and other mixed atom clusters in particular. 

Previously, the basic staple of molecular quantum mechanics has been point 
group theory [3], spatial symmetry [4]. But this is more suited to the properties 
of individual molecules. Computational methods too deal with one geometry at 
a time. 
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The present paper will show that the molecules or reacting assemblies (RA) of 
an isomeric set of atoms become related to each other by the principle of linear 
covariance [2] and the valency dyad space field [1] regardless of any spatial 
symmetry. Crucial electronic indices characterize certain equivalence classes into 
which molecules get classified under transformations which are in general non- 
unitary. 

2. The crucial electronic indices of a molecule are symmetry independent 
invariants 

To each {/~,~} =-{1~} in ~3, a spatial configuration of an isomeric assembly of 
m-atoms, i.e. a particular atom cluster or a molecule, M, there corresponds a full 
electronic Hamiltonian, Hetect~({/r which in turn is mapped into the independent 
electrons approximation hHMo({R}). [We shall treat the {h} here which display 
the key qualitative features. The results are extended to the many-electron {H} 
in another paper.] 

The covariant form of the h({R}) of a particular M is [2] 

h ---/30]ei)(e/] -~ ~uA ~ (1) 

with the starting linear basis frame {1 ei)} consists of the in general non-orthonormal 
(non-O.N.), but linearly independent [5] valency space [1] atomic orbitals, 
{AO(/~)}. On the basis [$ is the conventional 2D or 3D Hfickel matrix. However, 
Eq. (1) here, also holds for any other linear frame, [2] though the actual [3 will 
change with the frame. 

Under any SE L(n), the general linear group (let us take it over the real field), 
n = #{[ei)}, (the n-> m in general with many-electron atoms. With uni-valency 
point atoms n = m). 

s :  { ~ , j } - , { t L - -  ' J SkBijS.t}, (2a) 

[3 transforms covariantly, while {A ~ does so contravariantly: 

S: {a  ~ ~ {A k' = S~AoS~'}. (2b) 

The h itself in Eq. (1) remains invariant under any such transformation, as it 
should by the newly stated principle of linear covariance which was shown [2] 
to be dictated by the "superposition principle" of quantum mechanics. 

We see in Eq. (2a) that a molecule or other M (its h({/~})) is represented by many 
different [3-matrices depending on the linear frame used. 

In the conventional quantum theory of molecules, only a single [3, that on the 
{AO(/~)} frame represents an M. This non-covariant, frame specific [3 =-[3 A~ is 
placed so much emphasis on that only those transformations which leave [3 A~ 
the same, singled out as "symmetry operations", have received attention. These 
are of course the {/~}-fixed, point group symmetries [3, 4], q3. 
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Elements Sg ~ ~3, give 

Sg : [3AO ~ [3AO (3) 

(i.e. [[3AO, ~ ] = 0 ,  since S7' = S  +) while with the more general SoL(n) ,  the [3 
changes along an "orbit" (mathematics sense) of L(n), while the h itself is 
invariant. 

The Eq. (3) is a special case of Eq. (2a), since 

cg c L(n). (4) 

The %operations are actually symmetries of the geometric object {/~} in e 3. As 
{/~} is unchanged under q3, so is the 13 A~ which is in a direct relation to, and 
determined by {/~}. 

the Sen being the symmetric group [6] (permutation group) on n-objects (here 
the n-AO's if n = m as in alkali clusters). So there are further special cases of 
Eq. (2): 
a) If  under some S such that S is not a point group operation (S~ q3), but 

S ~ 6 ( n )  or U(n)" 

and (6) 

S : [3Ao ~ [3Ao, 

it will appear that there is a "hidden" symmetry leading to "accidental" 
degeneracies in the spectrum {hi} of flAO. We might call these "Hilbert space 
,symmetries" as opposed to the qJ on e3, spatial symmetries. 
b) If for some S such that 

S ~ ~'(n) or U(n) ] 

but I (7a) 
S:[3 A~ [3' 

we have with S = Su ~ U(n), therefore Sb' = Sb, 

[3'= St:[3~~ 

and (7b) 

A' = (S b) 'AS U 1 

Hence h itself, Eq. (1), is "unitarily invariant" as a special case of our "linear 
invariance". 

From Eq. (7b), [3'Su = St:[3 A~ for this case (b), as compared to the [[3AO, St:] = 0 
of case (a). 

In either case the spectrum of [3, {h;} remains unchanged under Eqs. (7a) or (b). 
[For the relation of Eq. (7) to the rare case of the "iso-spectrality" of different 
isomers, cf. below.] 
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The S ~ subgroups of L(n) in Eq. (5), transform O.N. frames to other O.N. frames. 
Then also, we saw that, whether 13AO remained or (rarely) changed, the {,t~}, 
eigenvalues (e.v.) of 13 are unchanged. 

By the principle of linear covariance [2], non-O.N, frames will do just as well. 
Under arbitrary non-unitary Sc  L(n), by Eqs. (1) and (2), h and its eigenvalues 
are invariant. These are the physically significant objects. The 13's and the spectrum 
of a particular 13, on the other hand, are frame dependent. 

A 13 resulting after an S e L(n) so that 13 ~ 13AO, is the covariant representation of  
h on a contravariant frame which is usually non-O.N. 

Given an arbitrary 13 could one determine whether it represents h albeit on a 
non-O.N, frame? The rest of this section shows the answer is yes. 

The principle of linear covariance 1-2] puts all frames related by {S} ~ L(n, C) over 
the complex field on the same footing. Results of the foremost practical importance 
are obtained however if we confine ourselves here to L(n, 5~) over the real field 
(additional features with L(n, C) will be treated in another publication). 

The h and its e.v.'s are invariants of L(n, ~ )  =- L(n) frame changes, while {/3~i} are 
covariant. 

While the eigenvalues {A~} of a 13 change as fl changes with the frame, the 
LPI =- "level pattern indices" - {n+, no, n_}, the numbers of positive, zero, and nega- 
tive eigenvalues of any {13} (hence also equal to those of h itself) are L(n)-frame 
independent. 

Any two 13's representing the same h on some L(n)-frames will be called "L- 
~,, "L'" equivalent or = .  

The "'L=" is an equivalence relation: l-a), 13 L/3', /3' ___L/3 ; b)/3 L/3,, /3 L /3,, /3, L /3,,; 

C) /3 ~ /3]. Proof follows from Eq. (2a) and that SS'= S"~ L(n) form a group. 

Therefore, all the {fl} representing the same h on O.N. or non-O.N, linear frames 
fall into one and only one L-equivalence class. 

Any one of the specific 13's, e.g. the 13AO can characterize this class, but a 
particularly convenient characterization is with It LP~, diagonal with plus or minus 
ones and zeros on the diagonal, i.e. with the LPI. 

As far as/3 's  are concerned, the LPI are more fundamental and crucial indices 
for a molecule than the actual eigenvalues of 13AO which would differ from those 
of h unless the AO's were O.N. (which they are not), and with bases changes. 

This is just as well since in practice most conventional MO-theory tools used 
qualitatively by the chemist are in reality ways to determine not the numerical 
values of e.v. 's--which depend on parameter choices, etc.--but  the types of 
"orbitals" which are bonding (a +/3). Non-bonding (3.~ ~  0), and anti-bonding 
(c~-/3), i.e. the {n+, no, n_}=-=- LPI. 

Conversely, coming back to the question posed, an arbitrary 13, which is n x n 
over 3t, represents h if it has the same LPI as the h. 
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3. Different molecules or clusters classified into equivalence classes 

Let MI and M ,  be two isomeric molecules or clusters with fixed geometries and 

with their hi and hH. 

All the n • n{/3} over ~t representing MI (or h~) fall in one L-equivalence class 
Cr. (They are on the same "L-orbit".) 

Similarly for {/3; hH} and CH. 

In the relation between M~ and M~t only two cases can arise: a) If(LPI)I  ~ (LPI ) ,  
then C / ~  CH and conversely. Then no/3i in any frame can equal any of the 13H 
in any frame, b) Suppose there is one 13i in some frame that is the same as some 
13H in one of  its frames. Then (LPI)~ = (LPI)~x ; C / =  CH and the two molecules 
Mr and MH will be in the same equivalence class: M~ L MH ; h~ =L h, .  (Either two 
elements are in distinct equivalence classes, or if the two orbits intersect at a 13, 
then the orbits are one and the same, because each 13 can belong in one and only 
one L-class.) 

Consequences: The members {M} of an isomeric assembly get classified into 
distinct L-equivalence classes {Ci}. Each M (its h) belongs in one and only one 
C~. Each class is characterized by a distinct LPI. Molecules (or chemically unstable 
clusters) with the same LPI are in the same class in any linear basis frame. 

Let Mt and MH be in the same L-class (MI LMH),  and 13AO be the conventional 
Hiickel matrix of MI. In general 13AtO, but since 13AO L 13AO, there will be some in 
general non-O.N, basis frame for MH, such that the representation of hH in that 
frame ~H =/~ IA~ In other words one can find a linear frame for I/, such that the 
graph which depicts ~H will look the same as the 2D or 3D Hfickel graph of 
MI, i.e. of  13AO. 

L 
One might call Mt and MH if they are = to each other, "iso-LPI" or "'isonomic" 
molecules (or clusters). 

Thus the members of an isomeric assembly of reacting atoms or molecules, or 
of static molecules each with its fixed geometry, become classified by their LPI's 
into equivalence classes. The qualitative chemistry of molecules can be deduced 
directly from this class structure without the intermediary of detailed quantum 
calculations on the computer, parameter choices, etc. The considerations of Refs. 
[1, 2] and above will be supplemented by practical techniques introduced in the 
next two papers of this series, then enabling various applications. 
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